



## Handheld Raman for quality control

CHARISMA RAMAN SCHOOL 18-19 OCTOBER 2022 Sacré P.-Y.

De Bleye C.

Hubert Ph.

Ziemons E.





## Outline

Definitions

Design of handheld Raman system

Spectral processing



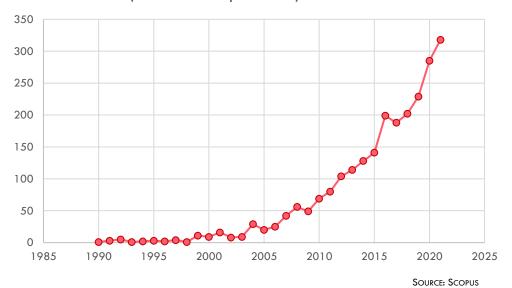
## Outline

Definitions

Design of handheld Raman system

Spectral processing




## Portable spectroscopy

Developments mainly driven by safety, security, terrorism, and military concerns

• Significant market presence after 9/11 attacks

screening and detection of explosives, chemical threats, etc...

Scientific papers 1990 - 2021 (handheld or portable) and Raman







## Nomenclature

#### Portable

- 3 20 kg, may be moved from a location to another
- Hard waterproof case + laptop + optical fiber probes

#### Handheld

- 0.5 3 kg
- All-in-one systems battery powered



SOURCE: BRUKER





Source: Hamamatsu

#### Miniature

• <0.5 kg



## Outline

Definitions

Design of handheld Raman system

Spectral processing



## Design of handheld Raman

- Design driven by the intended application
  - Qualitative vs quantitative
- General principle of "good enough"
  - Accurate answer with the required confidence level
  - Smallest measurement time
  - Lowest cost
  - Lowest power draw
  - Minimal inter-equipment variation
    - → compromises have to be made



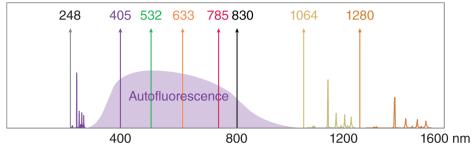
## Design of handheld Raman

- Indoor and outdoor operations:
  - Temperature
  - Shocks and vibrations
  - Humidity
  - Dust
  - Stray light mitigation
- Users:
  - Non expert spectroscopists (vs laboratory equipment)



# Handheld Raman spectrometer

#### Composed of 4 main parts:


- Laser source
- Spectrometer
- Sample interface
- User interface

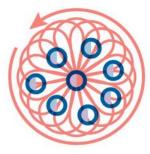


## Laser source

#### Development of **diode lasers** $\rightarrow$ key enabling technology

- Short warmup times
- May be switched on and off




Source: Portable spectroscopy and spectrometry 1: technologies and instrumentation

- Power of 5 500 mW
  - May be adjusted ( > analysis of explosives)



May be rastered 

improve representativity and less local heating



Source: Metrohm



# Spectrometer

#### Usually a trade-off has to be found between:

- Spectral range
  - 200-2400 cm<sup>-1</sup>
- Optical resolution
  - < 15 cm<sup>-1</sup> FWHM
- Analysis throughput
  - < 5 sec / analysis</p>

#### Minimal performances described in:

- Ph. Eur. 2.2.48
- USP <1858> and <858>



# Sample interface

Usually point-and-shoot configuration (180° backscattering)

- Analyse of samples in their original container
  - Should be translucid (plastic bags, blister packs, bottles/vials)
  - → Less manipulation
    - 7 throughput
    - $\beth$  risk for analyst (e.g. high potent chemicals)
    - 🔰 risk of sample contamination

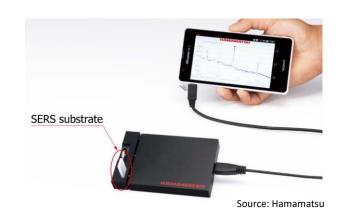


Source: Metrohm



## User interface

The interface should be application dedicated


- → short training
- higher throughput



Source: Metrohm

Integrated module with embedded computer + screen

- Physically separated module
  - Necessitates a smartphone / tablet / laptop





## Outline

Definitions

Design of handheld Raman system

Spectral processing



- Data collection settings
  - Exposure time, co-adds, ...
  - Automatically selected for the user
  - Based on general settings (e.g. sufficient SNR)
    - May depend on the environmental conditions (e.g. amount and nature of stray light)
  - Based on previously acquired data



- Conditioning of spectra
- Make data "robust" to measurement conditions
  - Subtraction of ambient signal
  - Correction of dead pixels / spikes
  - Intensity correction
  - Raman shift calibration

Preprocessing of spectra (derivative, baseline correction, ...)



- Qualitative objective
  - Identification
  - Confirmation
    - → One-class modelling
    - → Multi-class modelling

- Quantitative objective
  - Mixture analysis
  - Multivariate regression analysis



- Cached library stored in device
  - Commercial or third party
  - User-defined library

- Cloud-based services
  - Up-to-date
  - Deployable

- IT vulnerabilities
- Needs network
- Security issues



## Display of results

- User inference
  - Rank ordered list of items with metric values

- Statistical inference
  - Classification of results (pass/marginal/fail)
  - Hypothesis testing
  - Definition of threshold



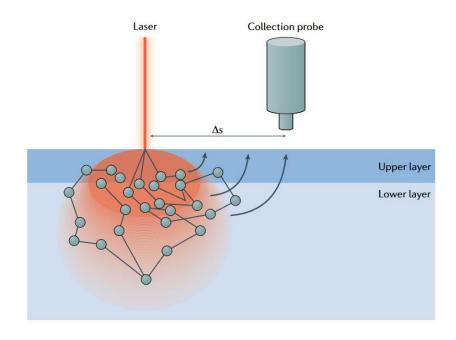


Source: Metrohm



## Outline

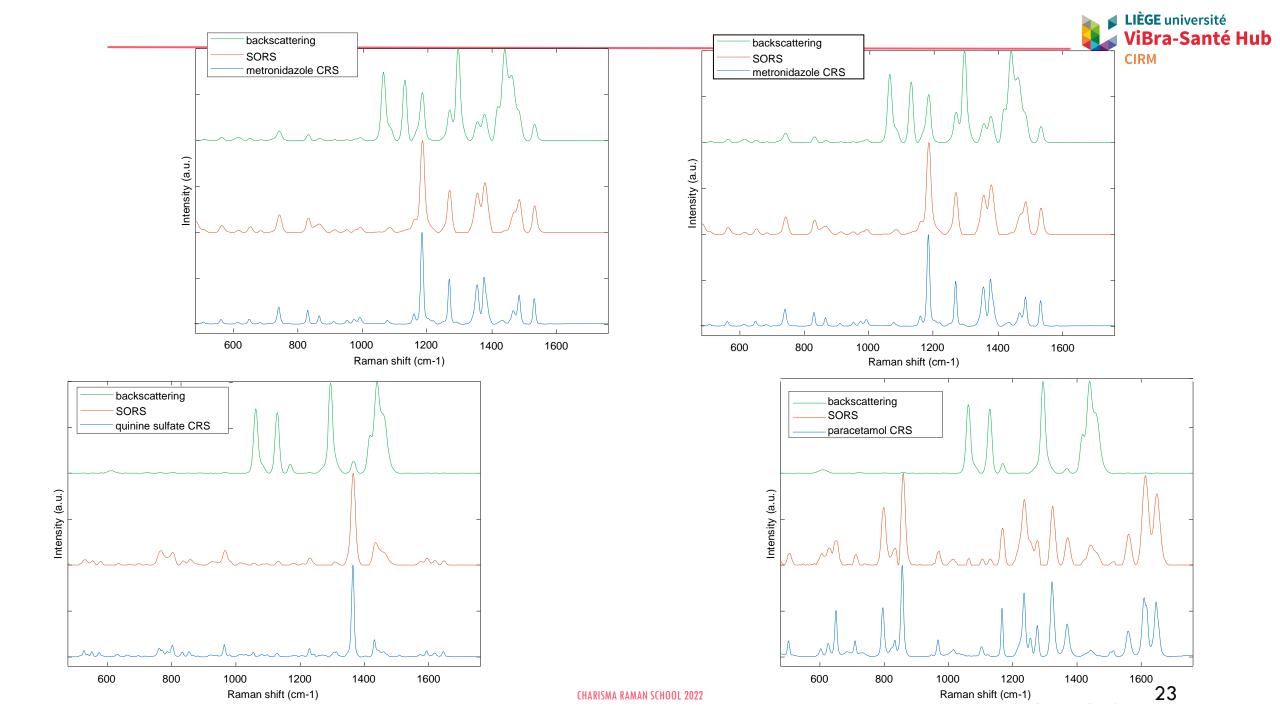
Definitions


Design of handheld Raman system

Spectral processing

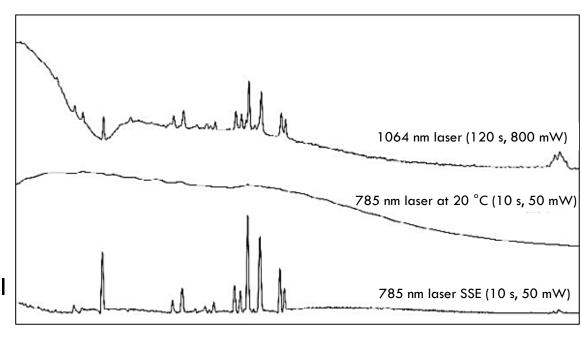


### Through Barrier analysis


- Defocused lenses
  - 180° backscattering measurement
  - 1064 nm laser compatible
- Spatially offset Raman spectroscopy
  - 830 nm laser
  - Limitations for some containers (e.g. cardboards)














- Fluorescence mitigation
  - Choice of laser wavelength (e.g. 1064 nm)
    - But  $1/\lambda^4$  signal intensity o longer acquisition time, more power needed, risk of burning
  - SERDS
  - Sequentially shifted excitation (SSE)
  - SORS
    - OK if fluorescence of packaging
    - NOK if fluorescence of investigated material





- Stand off measurements:
  - Max 2 meters distance
  - Can be combined with SERDS and raster scanning



Source: Pendar



Source: Metrohm



- Surface Enhanced Raman Spectroscopy (SERS):
  - Enhancement of Raman signal with metallic nanostructures (Au or Ag)
  - Increasing factor up to 10<sup>6</sup>
  - Exist as solid substrates or colloidal nanoparticles
  - Issues regarding reproducibility and stability

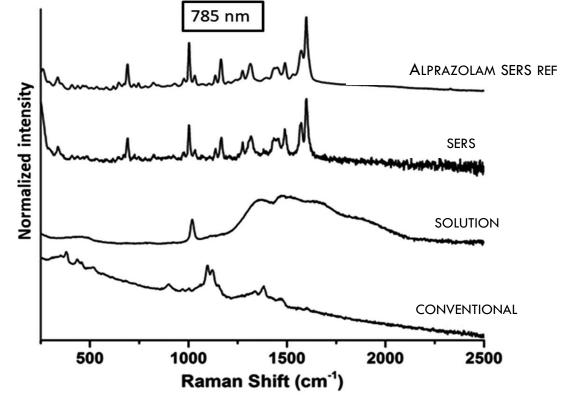
#### → for qualitative analyses










Source: Metrohm



SERS detection of low-dosed APIs in suspect samples (1 - 2 mg / tablet)

 $C_{min}$  ref: 0.5  $\mu$ g/ml

 $C_{min}$  sample: 1  $\mu$ g/tablet



Source: Kimani et al. DOI: 10.1111/1556-4029.14797



## Conclusion

- Recent technology (~20 years)
- lacktriangle Many applications lacktriangle many designs and possibilities

#### Perspectives

- Hyphenation of techniques (MIR, NIR, XRF, LIBS)
- Miniaturization, portability, cost
- Algorithms, databases, calibrations



# Thank you for your attention

Check our publications on: https://orbi.uliege.be/





