

FAIR Data Managemnet

Sandor Brockhauser^{*} and the FAIRmat team

*Center for Materials Science Data, Humboldt-Universität zu Berlin, Germany

Kepler's Laws

Tycho de Brahe (1546 – 1601)

Johannes Kepler (1571 – 1630)

_____nepler (name)/

 $\mathbf{F}_{\mathrm{Net}} = 0 \Leftrightarrow$

Tabularum Rudolphi CANON Sexagenarius Dierum In Refritutionibus integris In Quartis Pascibus Restitutionum Mercurii ad SOLEM. | (Veneris ad SOLEM.) Lung ad SOLEM. F_1 (sun) a Harmonices Mundi, 15 of London puts it: Tabulae Proval Society of London energy As the Royal Society not taking someone "Science is about not taking someone's word and so, instead, the science is always F₃ 5.52.37.41.21.2 42.54.56 4.2 Sex Di. Sex. Di dt

100

European Open Science Cloud

EOSC is the **Science, Research and Innovation data space** in the European strategy for data. *(European Commission)*

- seamless access
- FAIR (Findability, Accessibility, Interoperability and Reusability) management
- reliable reuse of research data and all other digital objects produced along the research life cycle (e.g. methods, software and publications)

European Open Science Cloud

EOSC is the **Science, Research and Innovation data space** in the European strategy for data. *(European Commission)*

320 million €

- 2016-2018 EOSCpilot
- 2018: EOSC Launch
- 2018-2022 INFRAEOSC4 (ESFRI Clusters)
- 2019-2022 INFRAEOSC5 (National Clusters)

The EU's open science policy

https://ec.europa.eu/info/research-and-innovation/strategy/strategy-2020-2024/our-digital-future/open-science_en

- Open Data
 FAIR and open data sharing should become the default for the results of EUfunded scientific research.
- European Open Science Cloud store, share, process and reuse research digital objects (like publications, data, and software)
- New generation metrics
 New indicators must be developed to complement the conventional indicators for research quality and impact, so as to do justice to open science practices.
- Future of scholarly communication All peer-reviewed scientific **publications should be freely accessible**
- Research integrity & reproducibility of scientific results
 All publicly funded research in the EU should adhere to
 commonly agreed standards of research integrity.

wwPDB / IUCr (2008)

- Macromolecular coordinates: mandatory deposition in PDB (created 1971)
- Structure factors: mandatory to accompany coordinates since 2008

11/29/2007

Announcement: Experimental Data Will Be Required for Depositions Starting February 1, 2008

Effective February 1, 2008, structure factor amplitudes/intensities (for crystal structures) and restraints (for NMR structures) will a mandatory requirement for PDB deposition.

These data must be deposited at a member site of the Worldwide Protein Data Bank (www.wwpdb.org): RCSB PDB (www.pdb.org), PDBe (www.ebi.ac.uk/msd), PDBj (www.pdbj.org), or BMRB (www.bmrb.wisc.edu).

Data can be released as soon as they have been processed and approved. There is a one-year limit on the length of time a structure and its experimental data can be put on hold, including structures that are on hold until the associated paper is published (HPUB).

This policy was developed as a result of comments and recommendations from the PDB user community, including the Commission on Biological Macromolecules of the International Union of Crystallography and the NMR Task Force, and has been endorsed by the wwPDB Advisory Committee.

Questions relating to depositions should be sent to info@wwpdb.org.

Nature Editorials (2009)

Data's shameful neglect. Nature 461, 145 (2009). https://doi.org/10.1038/461145a

Research cannot flourish if data are not preserved and made accessible. All concerned must act accordingly.

More and more often these days, a research project's success is measured not just by the publications it produces, but also by the data it makes available to the wider community....

Research funding agencies need to recognize that preservation of and access to digital data are central to their mission, and need to be supported accordingly. ...

"Data management should be woven into every course in science."...

What is more, <u>funding agencies and researchers alike must ensure that they support</u> not only the <u>hardware</u> needed to store the data, but <u>also the software</u> that will help investigators to do this. One important facet is metadata management software: tools that streamline the tedious process of annotating data with a description of what the bits mean, which instrument collected them, which algorithms have been used to process them and so on — information that is essential if other scientists are to reuse the data effectively.

Naure Editorials & Science Editorial (2014)

Journals unite for reproducibility. Nature 515, 7 (2014). https://doi.org/10.1038/515007a

a group of editors representing <u>more than 30 major journals</u>; representatives from funding agencies; and scientific leaders assembled at the American Association for the Advancement of Science's headquarters in June 2014 to discuss principles and guidelines for preclinical biomedical research. The gathering was convened by the US National Institutes of Health, Nature and Science (see Science 346, 679; 2014)....

Reproducibility, rigour, transparency and independent verification are cornerstones of the scientific method...

<u>Journals should recommend deposition of data in public repositories</u>, where available, and link data bidirectionally when the paper is published. Journals should strongly encourage, as appropriate, that all materials used in the experiment be shared with those who wish to replicate the experiment....

The hope is that these guidelines will be viewed not as onerous, but as part of the quality control that justifies the public trust in science.

Acta Crystallographica D, IUCr (2019)

Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography, Acta Cryst D, Struct. Biology https://doi.org/10.1107/S2059798319004844

(i) <u>Authors should provide a permanent and prominent link from their article to the raw data sets</u> which underpin their journal publication and associated database deposition of processed diffraction data (e.g. structure factor amplitudes and intensities) and coordinates, and which <u>should obey the FAIR' principles</u> that their raw diffraction data sets should be Findable, Accessible, Interoperable and Re-usable (https://www.force11.org/group/fairgroup/fairprinciples).

(ii) A registered <u>Digital Object Identifier (doi) should be the persistent identifier</u> of choice (rather than a Uniform Resource Locator, url) as the most sustainable way to identify and locate a raw diffraction data set.

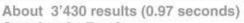
In 2018, the IUCr Commission on Biological Macromolecules (CBM) and the IUCr Committee on Data submitted a memorandum to the IUCr Executive Committee and proposed a mechanism for making diffraction experiments publicly available. The goal of ensuring better reproducibility of scientific discoveries in structural biology would be achieved, in part, by:

(1) Allowing the scientific community to identify and re-use the original diffraction image data from a diffraction experiment, which is the primary source of information used to determine a particular macromolecular structure.

(2) Facilitating structure re-determination using those original diffraction image data.

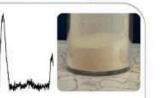
(3) Providing researchers with a straightforward mechanism that will permit assessing the correctness of the structure determination process.

(4) Providing a mechanism to ensure that the structures in the PDB and the publications derived from them are of the highest possible quality.


IUCr Journals are now taking the lead by encouraging authors to provide a doi for their deposited original raw diffraction data when they submit an article describing a new structure or a new method tested on unpublished diffraction data

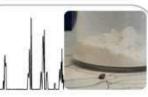
Nature Chemistry (April 2022)

Making the collective knowledge of chemistry open and machine actionable


Jablonka, K.M., Patiny, L. & Smit, B. Making the collective knowledge of chemistry open and machine actionable. Nat. Chem. 14, 365–376 (2022). https://doi.org/10.1038/s41557-022-00910-7

MOF that can be made in one step in water

Synthesis Recipes

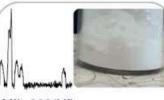


Nanocrystalline MIL-53 at room temperature Díaz's MOF notebook

XXXX 56 ratings

4 h at room temperature Na₃BDC in H₂O added to Al(NO3)₃-9H₂O in water

breathing abundant me



Nanocrystalline MIL-53 at room temperature Díaz's MOF notebook

72 h at room temperature Na2BDC in H2O added to Al(NO3)39H2O in water

show more results

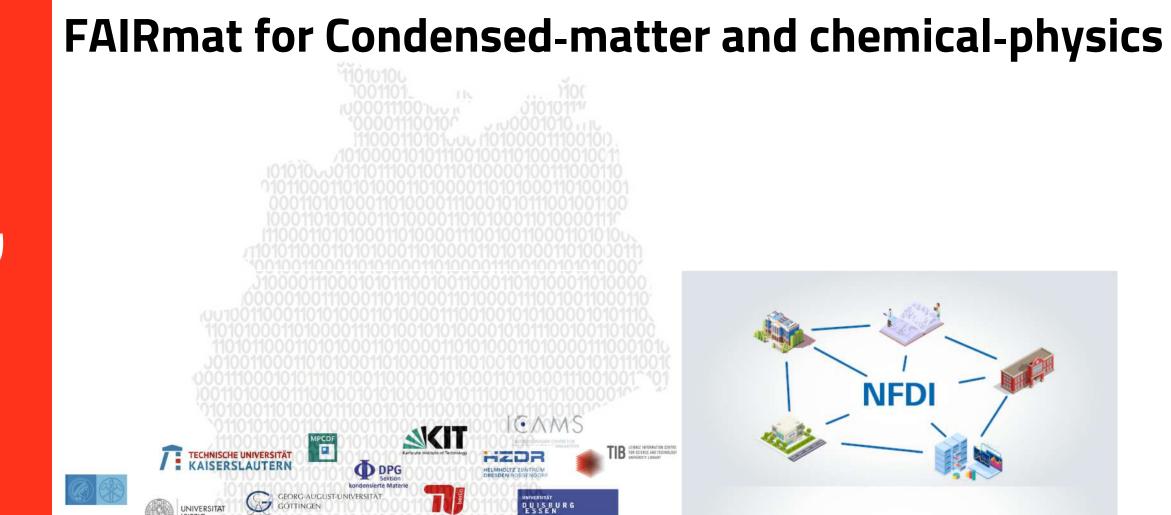
breathing abundant mel

XQ

MIL-808(Hf) for methane storage Dan's MOF blog 19 ratings 12 h at 100 °C HfCl₄ in water/formic acid then BTC ligand

CH₄ storage

German National Research Data Infrastructure, NFDI



FAIRmat for Condensed-matter and chemical-physics

FAIRmat

https://www.fairmat-nfdi.eu/fairmat/fairmat_/fairmatteam

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

RIEDRICH-ALEXANDER

MAX PLANCK INSTITUTE FOR

CHEMICAL ENERCY

F

R

UNIVERSITAT LEIPZIG

TECHNISCHE UNIVERSITÄT DRESDEN

FRIEDRICH-SCHILLER-UNIVERSITAT JENA

ikz

MARTIN-LUTHER

UNIVERSITÄT

HALLE-WITTENBERG

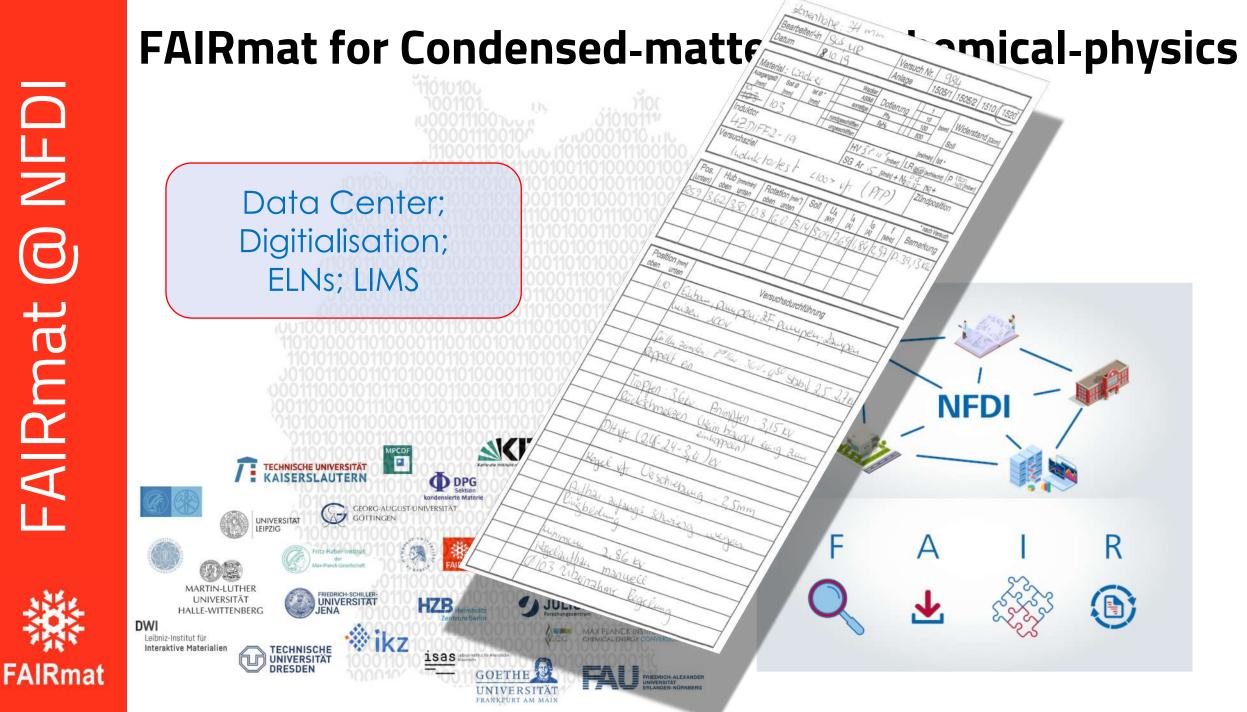
DWI

Leibniz-Institut für

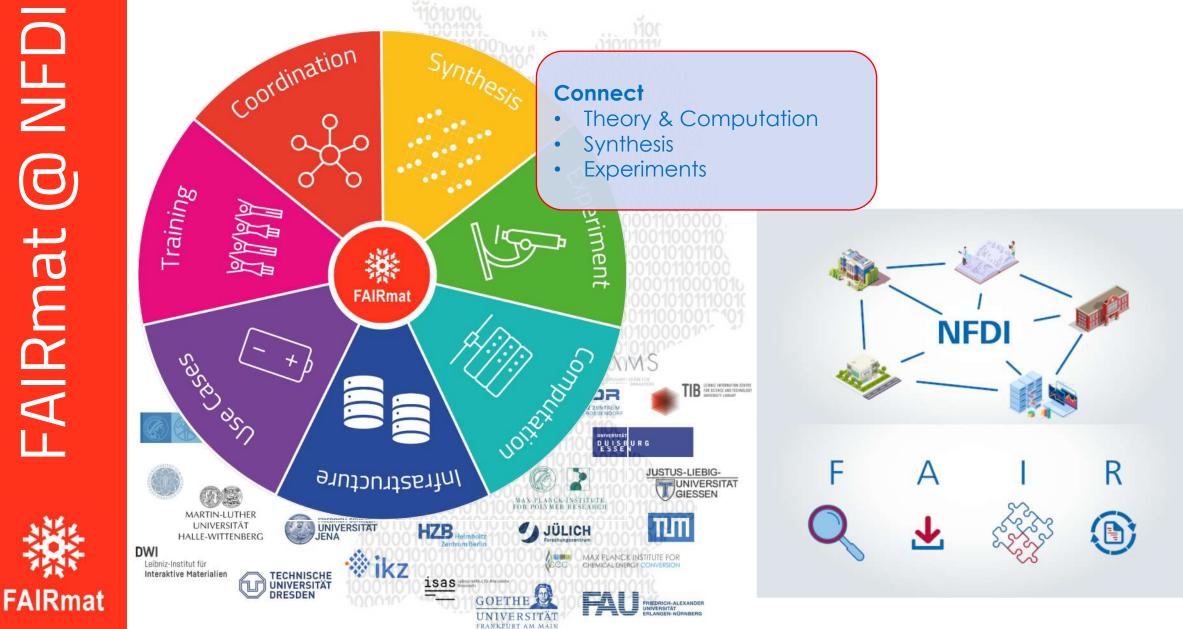
Interaktive Materialien

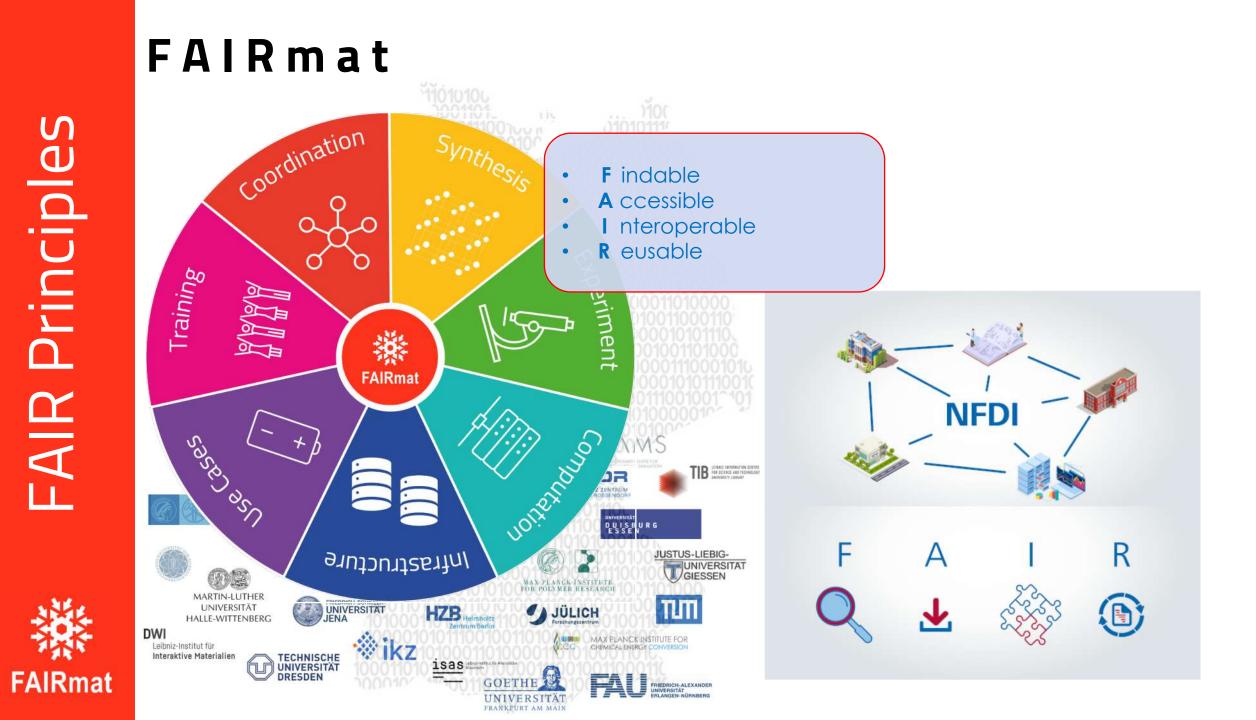
FAIR-D

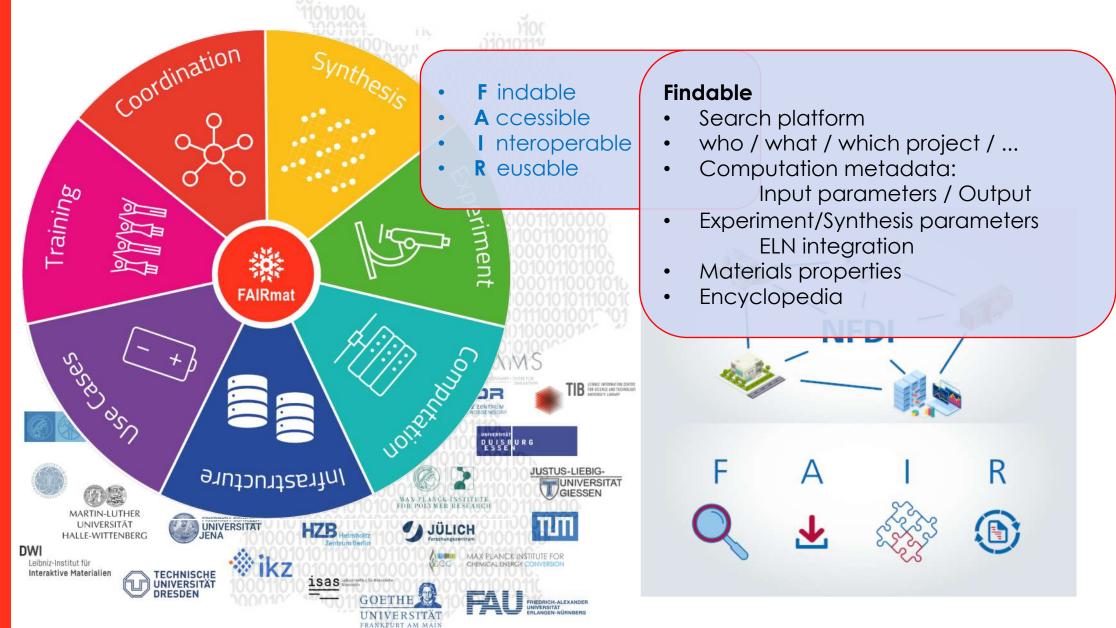
HZB

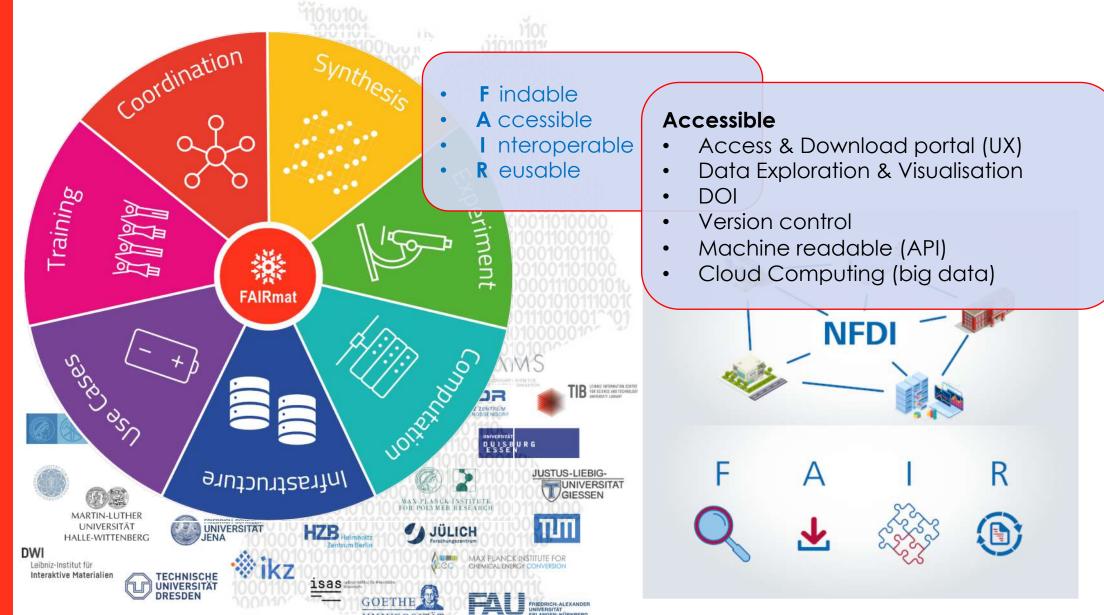

isas

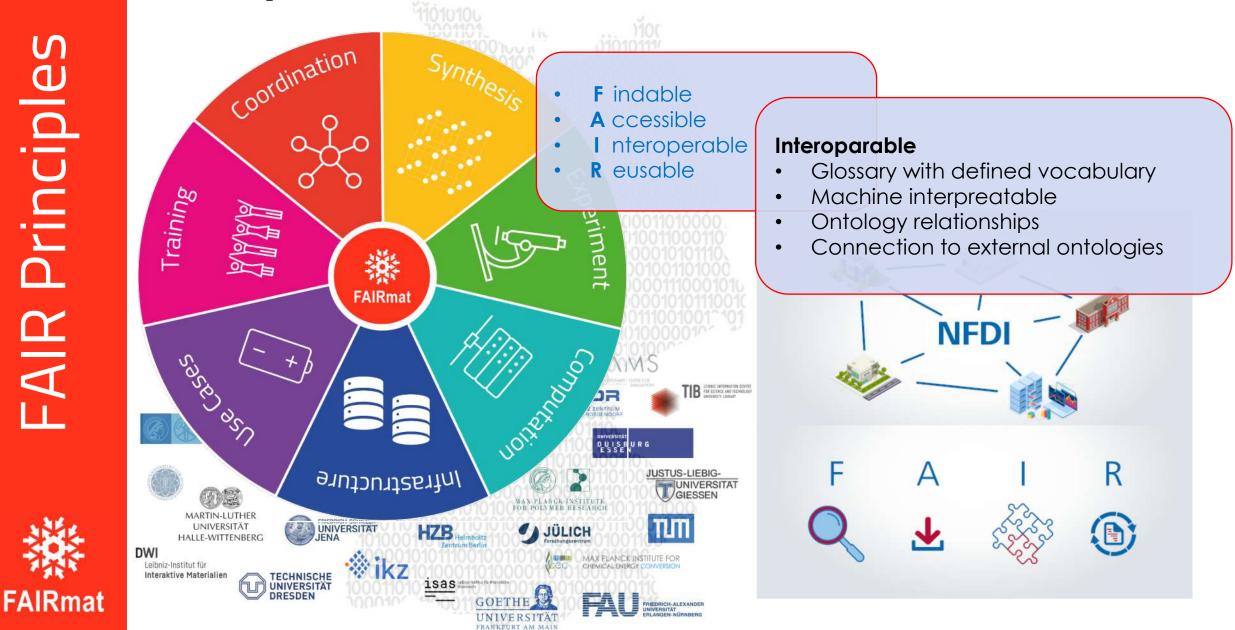
AX PLANCK INSTITUTE

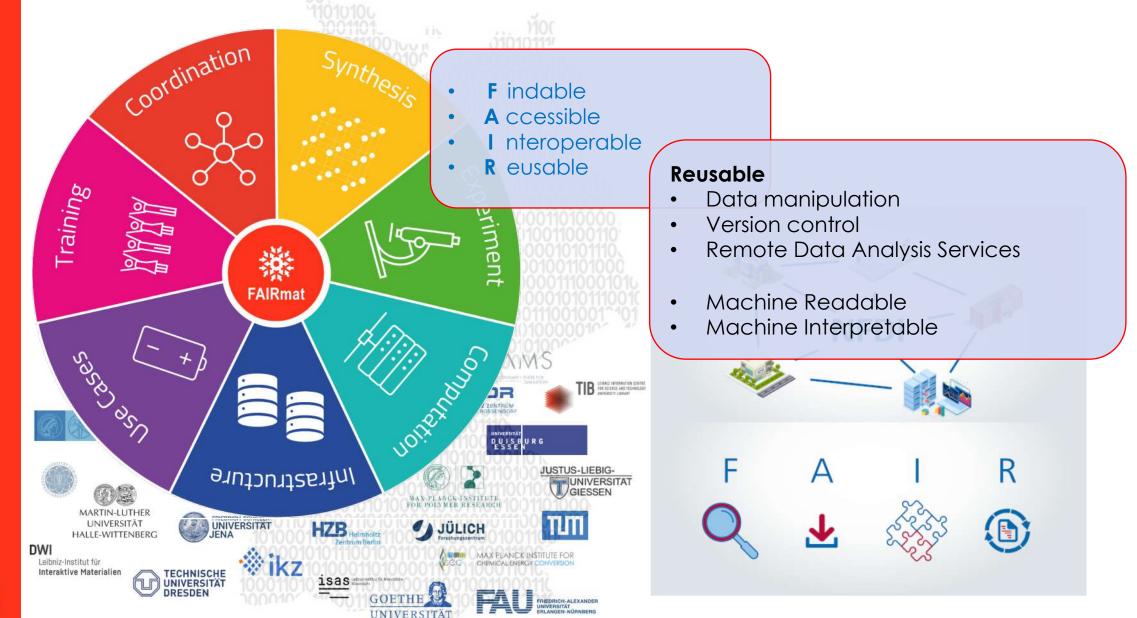

JÜLICH


UNIVERSITÄT FRANKFURT AM MAIN


FAIRmat for Condensed-matter and chemical-physics

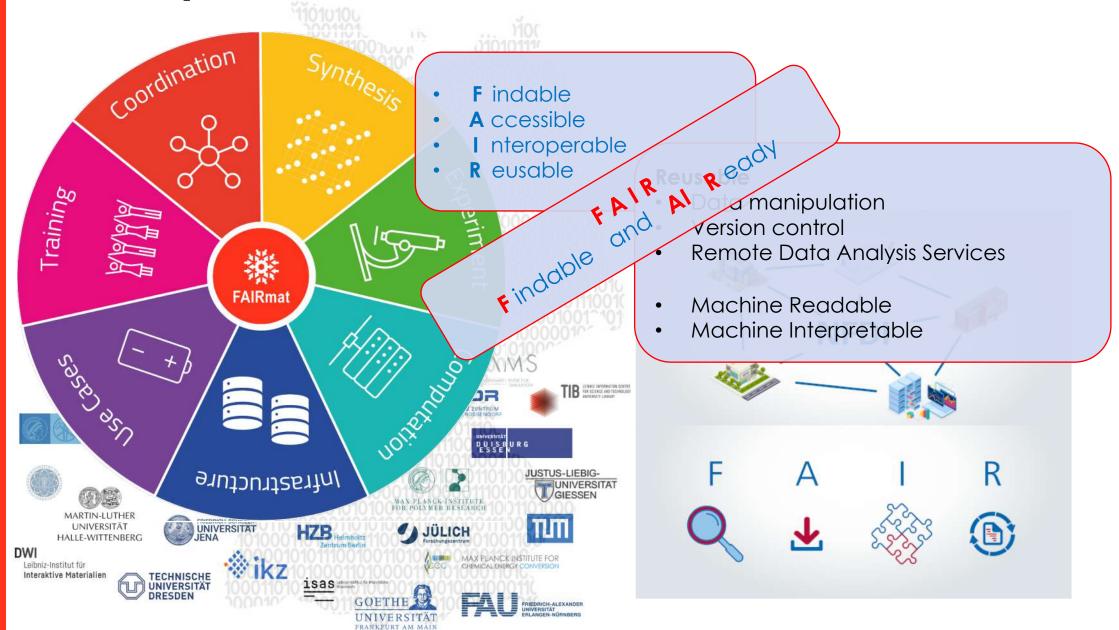

FAIRmat




FRANKFURT AM MAIN

Interoperable

FAIRmat



FRANKFURT AM MAIN

FAIRmat

Data Management and Reproducibility (in Computational Science)

- DATA (information representation)
- Metadata (contextual information)
- "If *T* is a linear transformation from a vector space *V* over a <u>field</u> *F* into itself and **v** is a <u>nonzero</u> vector in *V*, then **v** is an eigenvector of *T* if *T*(**v**) is a scalar multiple of **v**."
- Data + Metadata => Input data (for use)
- Application (uses Data for search, analysis, visualisation, etc.)
- Data + Metadata + Application => Output (new information)
- OUTPUT DATA + NEW METADATA (new information representation)

Reproducibility in Experiments and Synthesis

• Experiment

- Instrumentation
- Sample Preparation
- Sample Environment
- Monitors and Detectors
- Data Processing
- Notes

Synthesis

- Sample History
- Processes
- Characterisation
- Notes

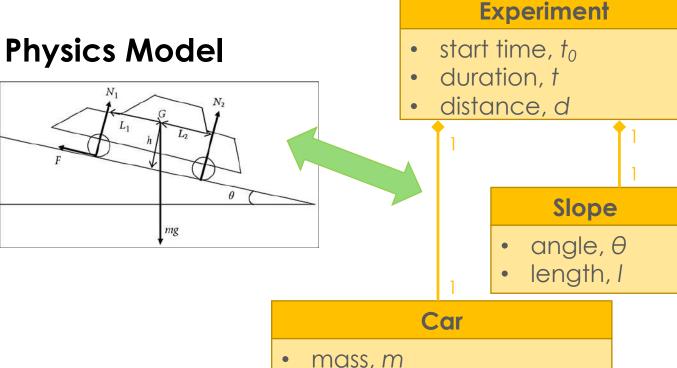
Reproducibility in Experiments and Synthesis

Experiment Data Models

• Experiment

- Instrumentation
- Sample Preparation
- Sample Environment
- Monitors and Detectors
- Data Processing

Sample History


Characterisation

• Notes

• Synthesis

• Notes

• Processes

- center of mass, [G,h]
- wheel positions, $[L_1, L_2]$
- force on wheels, $[N_1, N_2]$
- resistive force, F

Experiment Parameters

Reproducibility in Experiments and Synthesis

Experiment

- Instrumentation
- Sample Preparation
- Sample Environment
- Monitors and Detectors
- Data Processing
- Notes

Synthesis

- Sample History
- Processes
- Characterisation
- Notes

Conceptual Design Model

- Implementation independent Physics Model
- Does not tell how exactly it is performed

Samples:

- Composition
- Geometry
- History
 - • •

Measurements:

- ARPES experiment
- XRD

. . .

- XRF measurement
- Hyperspectral PL imaging
- THz spectroscopy
- I-V measurement

Sample Environment.:

- Temperature
- Pressure
- ...

Processes:

- Spin coating
- PVD deposition
- Solution preparation
- PLD deposition
- Hot plate annealing
- ...

Reproducibility in Experiments and Synthesis

Experiment

- Instrumentation
- Sample Preparation
- Sample Environment
- Monitors and Detectors
- Data Processing
- Notes

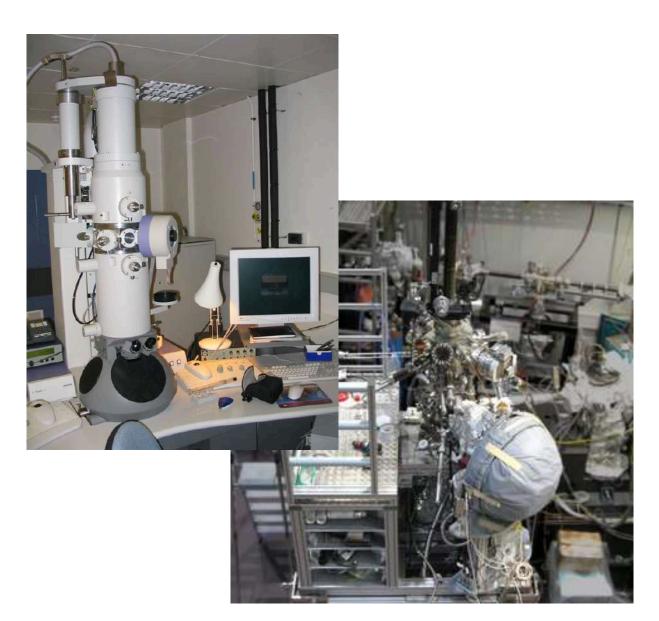
Technical Design Model

- Implementation specific
- Not only Physics Model, But also Technical Details

E.g. what was the pressure in a chamber

- Synthesis
 - Sample History
 - Processes
 - Characterisation
 - Notes

how it has been produced and maintained


Reproducibility in Experiments and Synthesis

• Experiment

- Instrumentation
- Sample Preparation
- Sample Environment
- Monitors and Detectors
- Data Processing
- Notes

Synthesis

- Sample History
- Processes
- Characterisation
- Notes

Reproducibility in Experiments and Synthesis

Experiment

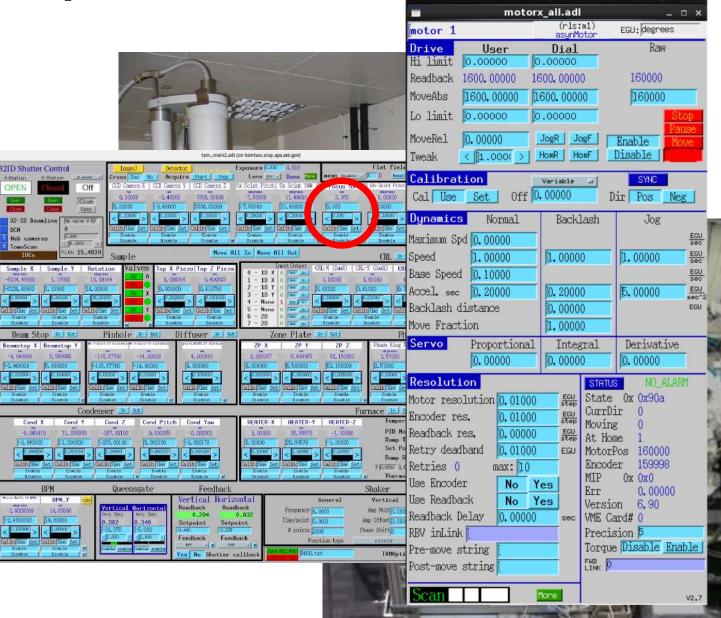
- Instrumentation
- Sample Preparation
- Sample Environment
- Monitors and Detect
- Data Processing
- Notes

• Synthesis

- Sample History
- Processes
- Characterisation
- Notes

au 15.4839 X Piezo Top Z Pie Cond Pitch Cond Yau HEATER-Y Feedbac ertical Horizonta 14, 8000 pequency L m Multis Ano Multin ine/point in I AND OFTIC Setpoint points 200 Freq Mult Feedback All Stop **TXMOptics**

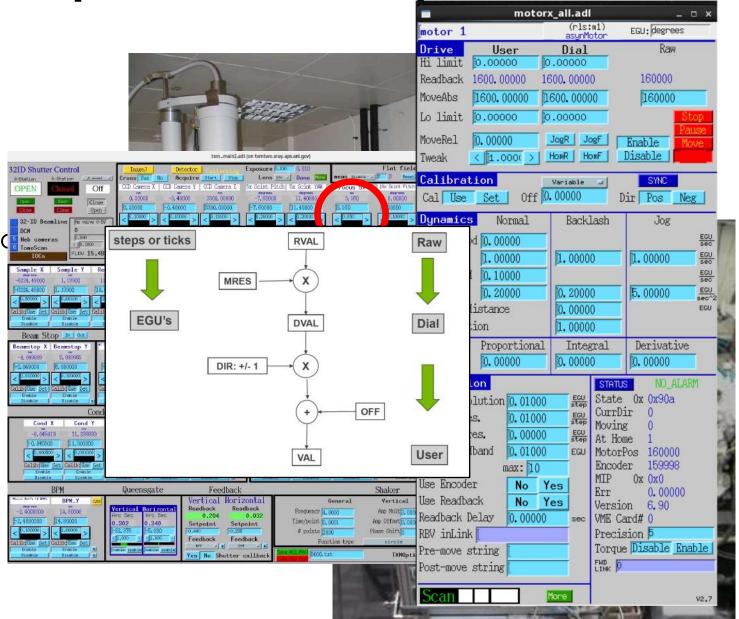
- 0 ×


Reproducibility in Experiments and Synthesis

Experiment

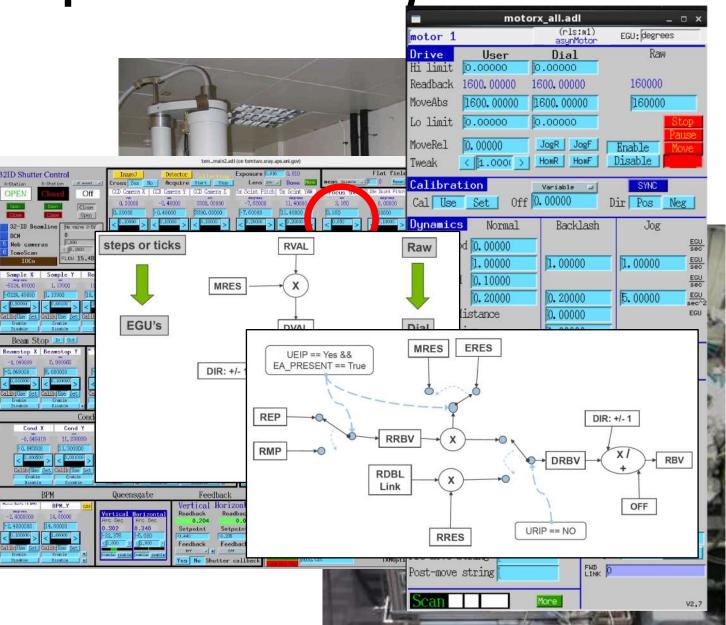
- Instrumentation
- Sample Preparation
- Sample Environment
- Monitors and Detector
- Data Processing
- Notes

Synthesis


- Sample History
- Processes
- Characterisation
- Notes

Reproducibility in Experiments and Synthesis

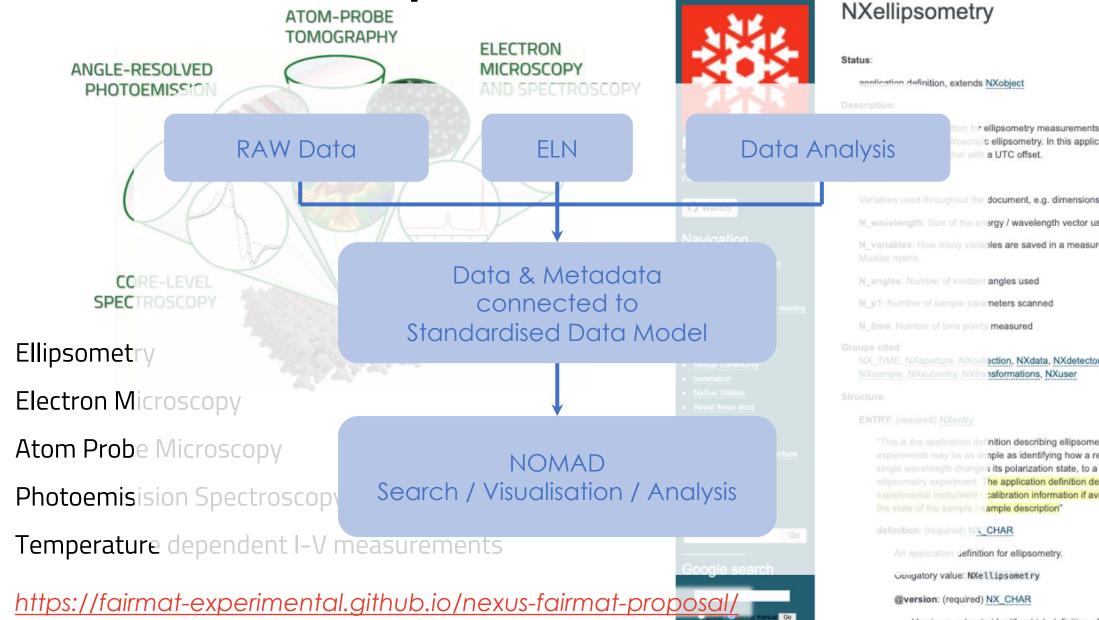
- Instrumentation
- Sample Preparation
- Sample Environment
- Monitors and Detector
- Data Processing
- Notes
- Synthesis
 - Sample History
 - Processes
 - Characterisation
 - Notes


Reproducibility in Experiments and Synthesis

- Instrumentation
- Sample Preparation
- Sample Environment
- Monitors and Detector
- Data Processing
- Notes

Synthesis

- Sample History
- Processes
- Characterisation
- Notes



Reproducibility in Experiments and Synthesis

FAIRmat

Data Models for Experiments

Version number to identify which definition of used for this entry/data.

Characterisation Methods in FAIRmat

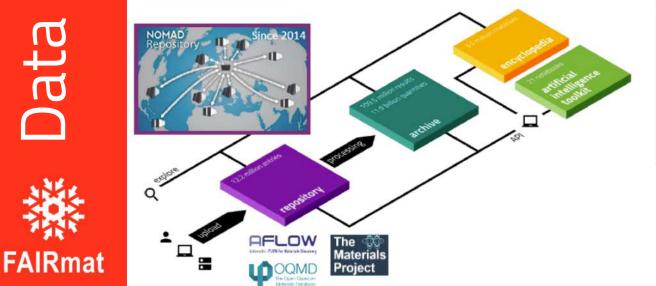
Area B:

• Optical Spectroscopy, EM, AREPS, XPS, Atomprobe Microscopy

Area A:

- Magnetic Resonance, Magnetometry, Scattering and Imaging, Electrical and Mechanical methods
- Synthesis processes and Sample description

Area C connection:


• Theory models and Simulation results

Area D Support

- Integration at Control System level
- Infrastructure for Data Management

lethod de name code version electronic structure method ASP 5.4.4 DFT	Material ORIGIN	IAL CONVENTIONAL
functional family vc functional names GA GGA_C_PBE, GGA_X_PBE sis set type ane waves	formula Ca4O12Ti4 material type bulk material name unavailable	
ithor metadata ^{ment} aterials Project Upload at 2021-06-23	crystal system spacegroup orthorhombic Pnma (62)	
00:32.111642 rences	ENCYCLOPEDIA	5 C 🖸 🔳 :

Biggest database in Materials Science (*https://nomad-lab.eu*)

Search > Er

DET

GGA_C_PI

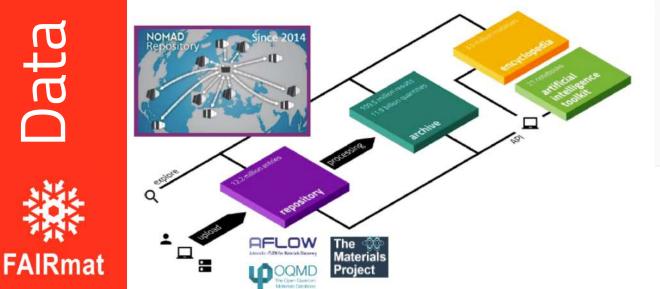
dataset

EXPLORE OVERVIEV

code name code version electro VASP 5.4.4

ve functional family ve functional

Author metadata Materials Project Upload a 06:00:32.111642 references


https://materialsproject.or

Materials Project no dat

Method

basis set type plane waves

more than 100 million high-quality calculations

	Fe Exclusive se	_	_	2.0												lear all		Search	
	EAGIDSIVE SE	erch o																	
	ſ	Eli	ement				artatata	ini.	ſ	Pro	perties	_							
0	-																		
✓ ABOUT ✓																			
	H 1																	He 2	
	11 2	Be 4											B 5	С б	N 7	0 8	F 9	Ne 10	
cture method	No	Mg 12											-	Si 14	P 15	S 18	Ci 17	Ar 18	
	K	Ca 20	SC 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	CO 27	Ni 28	CU 29	Zn 30	Gill 31	Ge 32	As 33	Se 34	Br 35	Kr 36	
GA_X_PBE	Rb	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	TC 43	Ru 44	Rh 45	Pd 46	Ag	Cd 48	in 45	S1 50	Sb 51	Te 52	1	Xe 54	
	Cs tti	Ba 56		Hf 72	Ta 73	W 74	Re 75	OS 76	11 77	Pt 78	Au 79	Hg	T	Phil	(B) (11)	Po 84	At 85	Rn 86	
	crystal system		acegrou						1	7		6		I		V			
21-06-23	orthorhombic	Pr	nma (6	52)				-	X			7		-	1				
2021-06-23	ENCYCLOPEDI	A												5	53	Ō	II	:	
iks/mp-14406																			
5	Electronic p	orope	erties	5															
				E	Band s	structi	Jre							De	nsity	of sta	tes		

Q

OFL OW

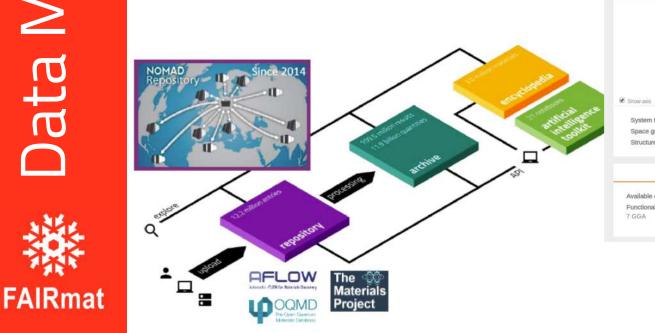
The CO Materials

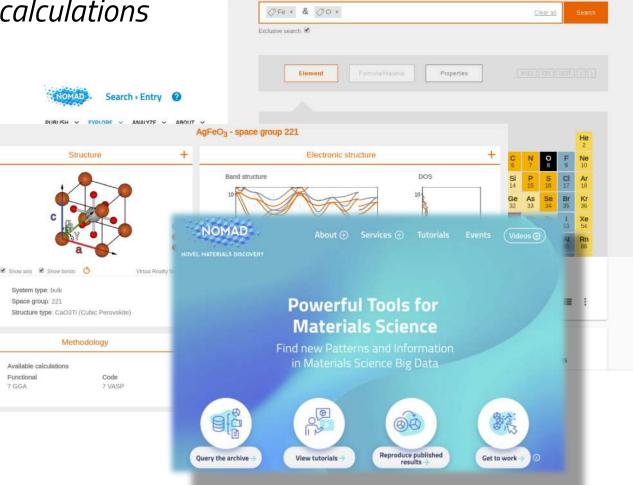
Project

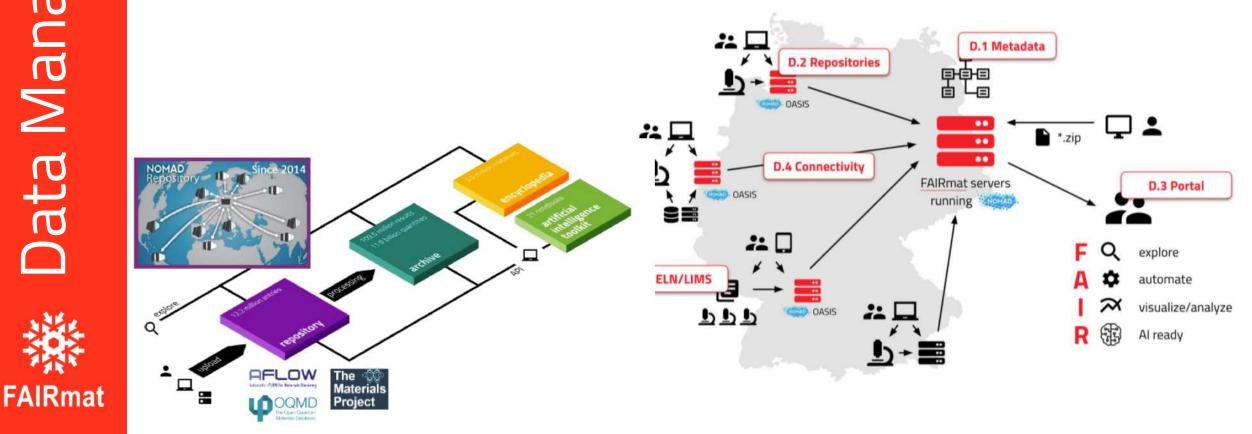
FAIR Theory and Computations

Biggest database in Materials Science (*https://nomad-lab.eu*)

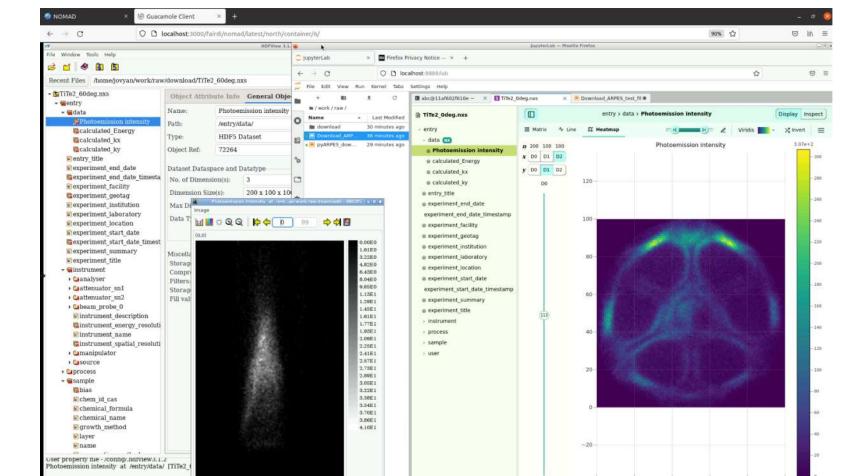
more than 100 million high-quality calculations () Fe × & () O × Clear all Exclusive search Properties Search > Entry APOUT AgFeO₃ - space group 221 Electronic structure Band structure DOS Ag • Fe 00 Show axis Show bonds Virtual Reality files 🗸 System type: bulk 5 0 🖬 Space group: 221 Structure type: CaO3Ti (Cubic Perovski DOS (states/eV/cell) From calculation 1648548 From calculation 383297 IGGA - VASE (GGA - VASP) Methodology - Spin f - Spin l Density of states Available calculations Functional Code


7 GGA


7 VASP

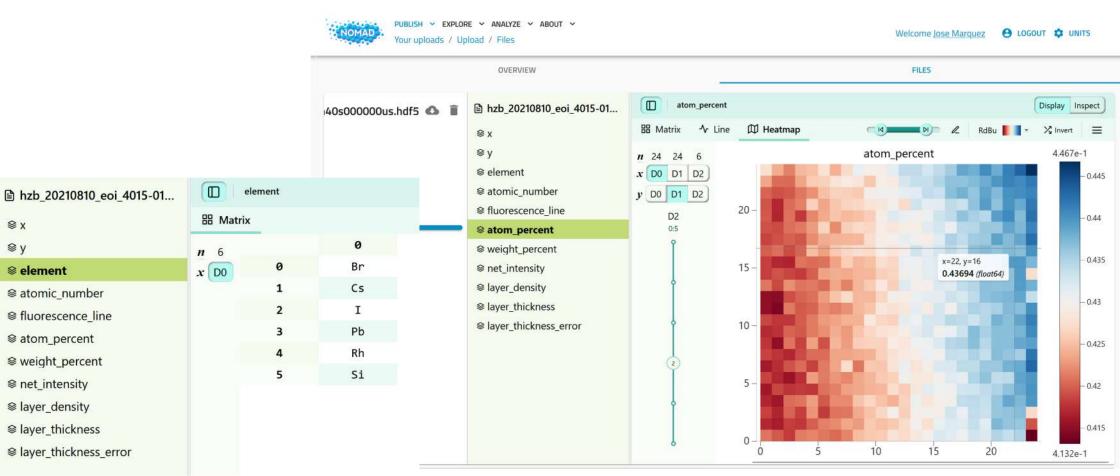

Biggest database in Materials Science (*https://nomad-lab.eu*)

more than 100 million high-quality calculations



Welcome Jose Marquez \varTheta LOGOUT 🖄 UNITS

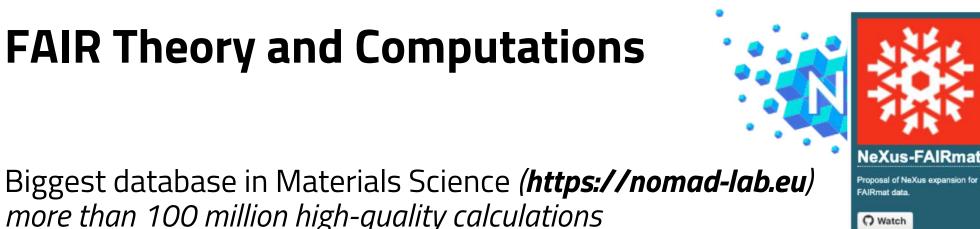
OVERVIEW			FILES			DATA		1062
ntry files 🖞 🔕 🚳 🔋 mpes.test - Copy.hdf5	οī		npes.test - Cop	v.hdt5				/ Shee ■ - Minuet = Linear - 1, Sin V
		00 NX Ima 1 100 100 x 00 01 y 00 01 D2	age 3 100 50 D2 D3	1.4 - 1.2 - 1 - 0.8 - 0.6 - 0.4 - 0.2 - 0.2 - -0.2 - -0.2 - -0.4 - -0.6 - -0.6 - -0.6 - -0.8 -			data (counts)	dues ■ • ½ twet ₽ timer • ½ tipy ■ two
				-1- -1.2-				
				-1.42.5	-2	-1.5 -1	-0.5 0	0.5 1 1.5


⊗ x

© y

FAIRmat

FAIR Theory and Computations



c	WERVIEW	FILES	DATA	 LOGS
march	•			□ code specific □ all defined □ definitions � <>
Entry () esten ua Strinois esuits + netadata + Later +	Sample write Puperines Pope Marguez Single and ELN sample Control and the Inford 2022 BAA Public and the Inford 2022 BAA Inford 2022 BAA Public and Inford 2022 BAA Publ	vectors sustain sustain pla_deposition ebeam_evaporation hotplate_annealing typ_annealing typ_annealing spin_coating chermical_bath_deposition	PVDEvaporation within Quartines Pepe Marguez Datation QU2002/2022 1845 Instance PVD-P Chernicals Continents Continents P Public Continents P Public Continents P Public Continents P Public Continents Public Contents Public	PLOT PLOT 00 00 00 00 00 00 00 00 00 0

more than 100 million high-quality calculations

Navigation

FAIRmat-NeXus Proposal NeXus Documentation

 Examples of writing and reading NeXus data files

NeXus: User Manual

NeXus: Reference

NeXus Community

About these docs

Electron Microscopy Structure

Go

Atom Probe Microscopy

Quick search

Google search

jobal 🔍 NeXus manual 🛛 Go

Documentation

Installation **NeXus** Utilities

MPES Structure Ellipsometry Structure

Structure

NXellip

Status:

application of

Description:

Draft applica to variable a specified alv

Symbols:

Variables us

N_waveleng

N variables Mueller matr

N_angles: N

N p1: Numb N time: Nur

Groups cited: NX TIME, N NXsample, I

Structure:

ENTRY: (red

"This is experim single w ellipsom experim

the state definitio

An a

Obl @v

@u

CAMON S	✓ EXPLORE ✓ ANALYZE ✓ ABO Actainfo Browser	ur v			
		source			
arch		 nomad 	•		
<> nexus aub section (nx_application_ellipsometry ()	nx_group_ENTRY sub section definition DESCRIPTION	nx_field_definition ()	sub section definition
rx_appli rx_appli rx_appli rx_appli rx_appli rx_appli rx_appli rx_appli rx_appli rx_appli rx_appli rx_appli rx_appli rx_appli rx_appli rx_appli	ation_apm > ation_archive > ation_archive > ation_canSAS > ation_directtof > ation_tofraw > ation_TIME > ation_fluo > ation_fluo > ation_fluo > ation_ligroc > ation_lauetof > ation_ation_auetof > ation_auetof > ation_auetof > ation_auetof > ation_genes >	DESCRIPTION Draft application definition for ellipsometry measurements, including complex systems up to variable angle spectroscopic ellipsometry. In this application definition, times should be specified always together with a UTC offset. UNKS nexus manual PROPERTIES nx_kind: group nx_optional: false BASE SECTION NXobject	This is the application definition describing ellipsometry experiments. Such experiments may be as simple as identifying how a reflected beam of light with a single wavelength changes its polarization state, to a variable angle spectroscopic ellipsometry experiment. The application definition defines: - elements of the experimental instrument - calibration information if available - parameters used to tune the state of the sample - sample description LNIKS nexus manual PROPERTIES	DESCRIPTION An application definition for ellipsometry. LINKS NEXUS MANUAL PROPERTIES NX_kind: field NX_type: NX_CHAR NX_cypional: false BASE SECTION definitionField SUB SECTION DEFINITIONES NX_attribute_version NX_attribute_version	DESCRETION Version number to identify which definition of this application definition was used for this entry/data. LANS nexus manual PROPERTIES nx_kind: attribute nx_optional: false BASE SECTION VersionAttribute QUANTITY DEFINITIONS INX_name INX_NAM
nx_applii nx_applii nx_applii nx_applii nx_applii nx_applii nx_applii nx_applii nx_applii nx_applii nx_applii nx_applii nx_applii nx_applii	ation_energydispersion + ation_calibration + ation_mx + ation_reftof + ation_sas + ation_sastof + ation_sastof + ation_spe + ation_spe + ation_spe + ation_stxm + ation_tofnpd + ation_tofnpd + ation_tofsingle + ation_tormo +	SUB SECTION DEFINITIONS nx_group_ENTRY (repeats) VSAGE SHOW USAGE	INCLOSE INX_kind group INX_optional: false BASE SECTION NXENTRY SUB SECTION DEFINITIONS INX_group_operator INX_group_operator INX_group_operator INX_group_operator INX_group_operator INX_group_operator INX_group_operator INX_group_operator INX_group_operator INX_field_experiment_identifier INX_field_experiment_identifier INX_field_ext_time INX_field_ext_time	QUANTITY DEFINITIONS nx_name nx_value USAGE SHOW USAGE	GRAPH

Application Definition

- NXuser
- NXinstrument
 - NXexcitation
 - NXdetection
- NXsample
 - Wavelength_detection[detection]
 - Measured_data[time,parameter,excitation,detection]
 - Timepoints[time]
 - Angle_of_incidence[angles]
 - Sample_stage

...

plot

doc: "Draft application definition for general optic symbols:

doc: Variables used throughout the document, e

N_wavelength_detection: Size of the energy / v

N_wavelength_excitation: "Size of the array of

excitation in the case of photolum

N_parameters: Number of sample parameters s

N_time: Number of time points measured

(NXopt_experiment): (NXentry):

doc: |

This is an application definition describing gen

A general optical experiment consists of a ligh beam path, a sample + stage + environment, a are reflection or transmission measurements, spectroscopy etc.

This application definition defines:

- * information on excitation and detection
- * description of the beam path
- * sample description
- * N-dimensional data field

definition: